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Group Classification of a Class of Coupled 
Equations 
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A complete group classification of a class of coupled equations that appear in 
many physical problems is presented by developing the method of preliminary 
group classification of Ihragimov et al. We give a symmetry group analysis for 
an interesting example. 

1. INTRODUCTION 

Since Lie (1881) gave a group classification for a wide class of second- 
order partial differential equations with two independent variables, the prob- 
lem of group classification for partial differential equations has attracted the 
attention of both theoretical physicists and mathematicians. It is well known 
that the problem of group classification of a given family of equations is 
more complicated than the problem of calculating the symmetry groups for 
given equations. 

Recently Ibragimov et al. (1991) gave a simple approach for a partial 
solution of group classification in terms of equivalence algebra. This method 
has been successfully applied to some interesting partial differential equations, 
for instance, a model of detonation (Ibragimov and Torrisi, 1992), the nonlin- 
ear diffusion equations (Yung et al., 1994), and a binary reacting mixture 
(Lalicate and Torrisi, 1994). 

This article extends the technique and applies it to a wide class of 
coupled equations that appear in dispersionless dynamic systems. The coupled 
equations read here 

u, + d f  = 0 (1.1a) 
dx 

vxt - g = 0 (1.1b) 

where f and g are arbitrary functions of u and v. 
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An interesting example of (1.1) is the system 

Ai = u, + (V2)x = 0 (1.2a) 

A2 = vx, -- 2uv = 0 (l.2b) 

which describes an integrable dispersionless model, and can be solved by 
the inverse scattering method (Konno and Oono, 1994). 

This paper is arranged as follows. In Section 2, we construct the equiva- 
lence algebra and the projective algebra L7. The adjoint group for algebra Lo 
is given in Section 3. In Section 4, we obtain the optimal system of one- 
dimensional subalgebras of Lo; the classification results are listed in Table 
II. Section 5 gives the symmetry group analysis. We end with a summary of 
the results. 

2. EQUIVALENCE ALGEBRA AND PROJECTIVE ALGEBRA L7 

An equivalence transformation is a nondegenerate change of variables 
t, x, u, v in addition to a change of the functions f (u ,  v) and g(u, v). 

The generator of an equivalence transformation has the form 

0 ~2 0 .ql 0 ,q2 0 ~ l O +  ~ 2 0  (2.1) 
Y = { ' ~ +  ~xx + ~uu + ~vv + Of Og 

where {i,.qi, i = 1, 2, are functions of (t, x, u, v) and bt i, i = 1, 2, are 
functions of (t, x, u, v, f, g). 

Equations (1.1) can be written as 

u, + f , .u~  + f~ 'vx  = 0 (2.2a) 

Vx, - g = 0 (2.2b) 

f = fx = 0 (2.2c) 

gt = gx = 0 (2.2d) 

The invariance conditions for (2.2) are 

Pr~Z)Y(u, + f~" ux + f~" vx) = 0 (2.3a) 

Pr(Z)Y(vxt - g )  = 0 (2.3b) 

pr{2)Y(f,) = pr~2)Y(f~) = 0 (2.3c) 

Pr{Z~Y(g,) = pr{2)y(gx) = 0 (2.3d) 

under the conditions (2.2), where Pr{Z)Y is the second prolongation of Y. 
The effective second prolongation pr{2~Y of Y is 
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pr(2ly = y + @a OnOUx nt- .112,x LOVx qt- ~Ll,t ~ft "~ ~jl,x LOfx 

0 ixi ,  . 0 + I.t2 a 
+ g .  og, 

_p_ i,L2,x 0 q- ,I]2,t x 19 (2.4) 
Ogx Ov,x 

The formulas for .ql~<, .qz+<, txl.,, txia, txl.,, txl.v, ixz.,, ix2a, and qq2.1x can be 
found in Olver (1986). For instance, 

qqZ,tx ~_ ,172 -Jr- 2 �9 huUx + "q2~Vx + ('n2. + 2 �9 l..Ux + ~12vv.)u~ 

+ ~q2ux ' + ~q2v t + 2 ~l.vUxV, + " q 2 # ~ v , -  ~]xVt 

- - ~xv,,  ( 2 . 5 )  

Substituting (2.4) into (2.3), and solving the overdetermined partial 
differential equations, we obtain 

~1 = Cl t _}_ C2 ' {2 = C3 x q_ C4 ' q]l = C51g _4_ C6 ' 372 = C7 V _1_ C8 

t Lt = (C 3 - -  C1 q- c3)f + C9, D2 = (C 7 __ Cl - -  c3)g (2.6) 

with arbitrary constants ci, i = 1, 2 . . . . .  9. 
The equivalence invariant vector field can be written as 

0 0 
Y = (ctt + c2) ~ + (c3x + c4) 0-7 

0 0 
"+- (C5/A -}- C6) 7"-  "+" (C7V -}- C8) 4- -  

OU VO 

o o 
+ [(c5 - cl + c3)f + c9] ~-~ + (c7 - cl - c3)g Og 

Then the equivalence algebra is generated by 

0 
YI = t - - - -  

Ot 

Y 3 = x  

Ys = u 

Yv = V 

0 
0 A r 2 = a 7  ' 

f - ~ -  g og' 

a + f O  0 0 
O--s O-f- g ~g' Y 4 -  Ox 

0 0 0 
- -  -'~ - -  Y 6  
Ou f o r '  Ou' 

0 0 0 0 
- - + g  Y s -  Y9 = - -  
Ov -~g' - ~v' Of 

(2.7) 

(2.8) 
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Let 

O ~2 3 ,T]I 0 ,I]2 3 
7x + G +  --or 

(2.9) 

0 ~12 3 ~ 0  iz2 O (2.10) 
Z = "q' ~uu + ~vv + 0-f+ 3g 

To calculate the principal Lie algebra, we need the following proposition 
(Konno and Oono, 1994). 

Proposition. An operator Z belongs to the principal Lie algebra L,~ for 
the system (1.1) ~, Z has one equivalence generator  Y, such that 

Z = 0 (2.11) 

In terms of  above proposition, we immediate ly  have 

cl = c 3  = c 5  = c 6 =  c7 = Cs = c 9 = 0  (2.12) 

So the principal Lie algebra L(r is generated by 

3 0 
Z1 = ~ ,  Zz = Ox (2.13) 

The functions f and g depend on u and v, and the projections of  Y~, i = 
1 . . . . .  9, on (u, v, f,  g) are 

0 a__ 
Zt = pr(Y1) = - f ~ -  g 

Og 

o L 
Z2 = pr(Y3) = f ~ - f -  g 

Og 

O + f O  
- Z3 = pr(Y5) = u Ou 

3 
Z4 = pr(Y6) - 

Ou 

0 0 
Zs = pr(Y7) = v Ov + g Og 

0 
Z6 = pr(Ys) = - -  

Ov 

0 
Z7 = pr(Y9) - (2.14) 

0f 
We denote L 7 = {Zi, i = 1, 2 . . . . .  7}. 
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3. A D J O I N T  G R O U P  F O R  L7 

The commutat ion relations o f  {Z.}, are summarized in Table I. 
Denote by A the elements o f  the algebra adL7; a basis of  the algebra 

adL 7 is 

0 
A,~ = [Z,~, Z~] oz.~'~' oL = 1, 2 . . . . .  7 (3.1) 

Using Table I, we obtain 

0 0 
A1 = Z1 0ZT' A2 = - Z 7  0Z7 

0 0 0 
A3 = - Z 4 - - -  Z 7 - -  A4 = Z 4 - -  

oz4 oza' oz3 

0 0 
A5 = - Z 6  0 z  6, A6 = Z6 - -~ '  

o o ) 
A7 = Z7 0 + 0 ~  0Z, (3.2) 

The element A3 generates the one-parameter  group of  linear 
transformations 

Zl = ZI, Z; = Z2, 

z; = Zs, z; =Z6, 

Z~ = Z3, Z~ = (1 - a3)Z4 

Z-~ = (1 - a3)Z7 (3.3) 

with arbitrary parameter a3, which can equivalently be represented by a matrix 

Table I. Commutation Relations of {Z} 

ZI Z2 Z 3 Z 4 Z5 Z 6 Z7 

ZI 0 0 0 0 0 0 Zv 
Z2 0 0 0 0 0 0 --Z7 
ZS 0 0 0 -Z4 0 0 -Z7 
Z4 0 0 Z~ 0 0 -Z6 0 
Z5 0 0 0 0 0 0 0 
Z6 0 0 0 0 Z6 0 0 
Z~ -Z7 Z7 Z7 0 0 0 0 
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M 3 ( a 3 )  = 

"1 
1 

1 

1 - a3 
1 

1 

, - - ~  < a3 < + o o  

1 - -  a 3 

(3.4) 

Along the same lines, we obtain Mx(al), m2(a2) . . . . .  mT(a7), - oc  < ai 
< +0% and 

7 

M = I-[ Mi(ai) 
i=1 

"t  0 
1 0 

1 

0 

- - a 7 "  

a7 

a4  a7 

1 - a3 0 

0 1 a 6 
0 1 - a5 0 

0 (1 + a0(1  - a2)(1 - a3) 

(3.5) 

To determine the adjoint group of  Lv, we require the coefficients e = 
(ei) of  

7 

Z = ~ eiZi (3.6) 
i=1 

The vector  e is t ransformed to ~ by the transposed matrix M ~ of  M, and 
then the t ransformation e has the following form: 

-61 = e l ,  e2 = e2, -63 = e3, -64 = a4e3 + (1 - a3)e4 ,  -65 = e5 

-66 = a6e5 + (1 -- as)e6 

-67 = (1 + al)(1 - a2)(1 - a3)e7 + a7(e2 + e3 - el) (3.7) 

These t ransformations give rise to the adjoint group of  the algebra LT. 

4. C O N S T R U C T I O N  O F  T H E  O P T I M A L  S Y S T E M  O F  O N E -  
D I M E N S I O N A L  S U B A L G E B R A  O F  L7 

In this section, we use a general approach to construct the opt imal  
system of  the one-dimensional  subalgebra of  LT. The  starting point is the 
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transformations (3.7). Notice that transformations (3.7) leave e ~, e 2, e 3, and 
e 5 invariant. So we have to look for all possibilities for el, e2, e3, and e5 and 
in every case to simplify other components  o f  e by means o f  (3.7). 

First, we consider the case 

and 

by putting 

el 4= 0, e2 4= 0,  e3 =~ 0, es v s 0 (4.1) 

In this case, we choose  

a3 = a5 = 0 (4.2) 

a 4  = a 6  = 0 (4.3) 

e 4  e 6  
aa = - - - - ,  a6 -- (4.4) 

e 3 6' 5 

To further proceed, we distinguish the two following subcases: 

e2 + e3 - el 4 : 0  (4.5a) 

e2 + e3 - el = O (4.5b) 

If  (4.5a) is valid, we choose 

e l  
av - al = az = 0 (4.6) 

e l  - -  e2  - -  e 3 '  

Then e becomes 

(el, ez, e3, 0, es, 0, 0) (4.7) 

In the subcase (4.5b), we get 

el = (1 + a0(1 - a2)el (4.8) 

Therefore e is t ransformed to 

(e2 + e3, e2, e3, 0, es, 0, (1 + al)(1 - a2)e7) (4.9) 

so we obtain the fol lowing two nonequivalent operators which correspond 
to (4.5a) and (4.5b): 

Z5 + aZl  + [3Z2 + "r a ~ [5 + ~, a ,  [3, ",/ 4 : 0  (4.10a) 

Z5 + (a  + [3)Zl + aZ2 + [3Z3 + "r 

~x + [3 4: 0, o~,[3 r  (4.10b) 

The second case is 

el 4: 0, e2 r 0, e3 ~ 0, es = 0 (4.11), 
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Fol lowing the same procedure,  we get two nonequivalent  operators  

Zl + aZ2 + [3Z3 + "/Z6, ~ :g 0, 

Zl + aZ2 + (1 - a)Z3 + [3Z6 + ~/Z7, 

The other cases are 

el r 0, e2 r 0, e3 = 0, e5 ~ 0 

Z 1 -~- otZ 2 -~- [3Z 4 -~- ~/Z5, ot ::~ O, 1, "~ ::~ 0 

Zt + Z2 + aZ4 + [3z5 + -,/7-,7, 13 4 : 0  

et :~ O, e 24:  O, e3 = e5 = 0 

Z I + otZ 2 + [3Z 4 -~- '~/Z6, {3/. 4: O, 1 

Z l -]- Z 2 -Jr- o/.Z 4 --~ [3Z 6 -~ '~/Z 7 

el  v e 0, e2 = 0, e 3 ~: 0, 

Zj + aZ3 + [3Z5, e t r  0, 1 

z~ + Z3 + aZ5 + [3Z7, a + 0 

el :~ 0, e2 = e5 = 0, e3 ~ 0 

Zi + etZ3 + [3Z6, et ~ 0, 1 

Z 1 -~- Z 3 -~- otZ6 -~- [~Z 7 

el 4: O, e2 = e3 = O, e5 :# 0 

zj + az4 + 13z5, 

el  4: O, e2 = e3 

Z 1 + (?r 4 -l- [3Z 6 

e~ = 0 ,  ez v ~ O, 

22 ~'- otN3 q- [325, 

1 3 r  

= e 5 = O  

e 5 4 : 0  

e 3 4 : 0 ,  e 5 4 : 0  

a :/: O, - 1, [3=#0  

z2 - Z3 + ~Z5 + 13Z7, a + 0 

el = e5 = 0, e 2 r 0, e3 ~ 0 

Z 2 -'[- otZ 3 "}- [3Z6, a ::fi O, - 1  

Z2 - Z3 + otZ 6 -[-- [3Z 7 

el = e3 = O, e2 :r O, e 5 4 : 0  

[3 r  ~ + [3 r 1 (4.12a) 

e~ 4: 0, 1 (4.12b) 

(4.13) 

(4.14a) 

(4.14b) 

(4.15) 

(4.16a) 

(4.16b) 

(4.17) 

(4.18a) 

(4.18b) 

(4.19) 

(4.20a) 

(4.20b) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26a) 

(4.26b) 

(4.27) 

(4.28a) 

(4.28b) 

(4.29) 



G r o u p  Classification of a Class of Coupled Equat ions  2023 

Z2 + otZ4 + f3Zs, f3 4 : 0  (4.30) 

e2 4= O, el = e3 = e5 = 0 (4.31) 

Z2 + r + [3Z6 (4.32) 

el = e2 = O, e3 4: O, e5 4 : 0  (4.33) 

Z3 + c~Zs, c~ 4 0 (4.34) 

el = e2 = e3 = O, e5 4 : 0  (4.35) 

Z5 + aZ4 + 13Z7 (4.36) 

el = e~ = e5 = O, e3 # 0 (4.37) 

Z6 (4.38) 

eL = e2 = e3 = e5 = 0 (4.39) 

Z4, Z7, Z4 -}- Z6, Z4 - Z6, Z4 + Z7, Z4 - Z7, Z6 --}- Z7, 

Z6 - Z7, Z4 -1- Z6 -}- Z7, Z4 + Z6 - Z7, 

Z4 - Z6 + Z7, Z4 - Z6 - Z7 (4.40) 

Summar iz ing  the above results, we obtain the fol lowing optimal system 

of one-dimensional  subalgebrals of L7: 

Z (1) = Z5 + 

Z (2) = Z5 + 

Z (3) = Z 1 -I- 

Z (4) = Z~ + 

Z (5) = Z~ + 

Z (6) = Z1 4- 

Z (7) = Zt + 

Z (s) = Z~ + 

Z (9) = Z 1 -}- 

Z (w) = Z~ + 

Z (11) = Z 1 -}" 

Z (~2) = Z1 + 

az~ + 13z2 + ~z3 (a, [3, ~ + O, ~ ~ [3 + ~) 

(a + 13)z~ + ~z2 + ~z3 + ~z7 (a ~ O, [3 ~ O) 

c~z2 + [323 + ~z6 (e~, 13 # o, e~ + 13 # 1) 

otZ 2 -1- (1 --  o t )Z 3 -]- [3Z 6 -[- ~ Z  7 (or 4= O, 1) 

oLZ2 + 13z4 + "yZ5 (e~ # O, 1, -y 4: O) 

Z2 + e~Z4 + [325 + "yZ7 ([3 * O) 

etZ2 + [324 + "yZ6 (13 + O, e~ + O, 1) 

e~Z2 + "yZ6 ('y ~ O) 

Z2 + oLz4 + [326 + ~z7 (e, 4: O) 

z2 + 13z6 + .yz7 (13 ~ o) 

oLz3 + 13z5 (e, vs O, 1, 13 * O) 

z3 + c~z5 + 1327 (eL * O) 
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Z 03) = Zl  + 

Z (14) = Z 1 q- 

Z 05) = Z~ + 

Z(16) ~.~ Z 1 --1- 

Z ~ = Z2 + 

2 (18) = Z 2 - -  

Z (19) = Z2 + 

z(2O) = 2 2  - 

Z(21) = Z 2 ff- 

Z (22) = Z 2 -'}- 

Z (23) = Z 2 q- 

Z (24) = Z 3 q- 

Z (25) ~__ 25  q- 

Z(26) = 2 6 

Z (27) = Z4 

Z(28) = Z 7 

Z (29) = Z 4 -.}- 

2 (30) = 2 4  - -  

Z ~31) = Z4 + 

2 (32) = Z 4 - -  

Z(33) = Z 6 q- 

2(34)  ~___ Z 6 - -  

Z (35) = Z4 + 

Z (36) = Z 4 + 

Z (37) = 24 - 

Z (38) = Z 4 - 

A p p l y i n g  the  

RZ3 + [326 (eL 4: O, 1) 

23 + o~26 + 1327 

o~z4 + f~25 ([3 ~ o) 

a24 + Bz6 ([3 ~ o) 

az3 + B25 (0~ ~ o, -1 ,  [3 ~ o) 

23 + e~25 + 627 

e~z3 + 13z6 (a 4= O , - 1 )  

z3 + o~26 + [327 

,~24 + [325 

~z4 + [3z6 (e~ ~ O) 

[326 ([3 ~ o) 

225 

o~24 + [327 

26 

26 

27 

27 

27 

27 

26+7.7 

26--27 

2 6 + 2 7  

Z6 - Z7 (4 .41)  

a b o v e  resu l t s ,  w e  c a n  g i v e  a c o m p l e t e  c l a s s i f i c a t i o n  a d m i t -  
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ting an extension by one of the principal Lie algebra for (1.1). The results 
are listed in Table II. 

. S Y M M E T R Y  G R O U P  A P P R O A C H  F O R  (1.2) 

The symmetry algebra of (1.2) consists of differential operators of the 

0 0 0 
X = ~(t, x, u, v) ~ + "q(t, x, u, v) ~xx + ~b(t, x, u, v) 0--u 

0 
+ xF(t, x, u, v) av (5.1) 

such that their second prolongation satisfies 

Pr~Z)X(Ai)lai=o.i=l,2 = 0, i = 1, 2 (5.2) 

This condition is imposed by application of the differential operator Pr ~2) 
to Ai and then elimination. Equating to zero the coefficients of linearly 
independent expressions in the t and x derivatives of u and v, we obtain a 
system of determining equations for the coefficients 4, ~1, +, and �9 in (5.1). 
The general element of the symmetry algebra of (1.2) has the form 

0 0 0 0 
X = - -  Y = t - - - u - - - v - -  

Ot' Ot Ou Ov 

0 0 
Z(0-) = cr(x) 7x 0-x(x)u au (5.3) 

where 0-(x) is an arbitrary function of x. We thus see that this Lie algebra is 
indeed infinite dimensional, as its element is labeled by an arbitrary func- 
tion or(x). 

The commutation relations of (5.3) are 

[ X , r ] = X ,  [y ZI = [X, ZI = 0 

[2.(O"1) , 2,(0"2) ] = Z(0-1o- 2 - o-20"1) ( 5 . 4 )  

which shows that ~X, 17, Z} has a Kac-Moody-Virasoro structure. 
We now look for the particular solutions of (1.2) that are invariant under 

the subgroups of the symmetry groups which correspond to the Lie algebras 
(5.3). To be clear, we distinguish the following cases. 

Case (i). The subalgebra Y + Z(x).  
The solutions of (1.2) have the form 

u = x-2 f (1) ,  v = x - l g ( I ) ,  I = t/x (5.5) 

fonn 
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Substituting (5.5) into (1.2), we find tha t f ( I )  and g( I )  satisfy 

Ig" + 2g'  + 2fg = 0 (5.6a) 

f '  - 2g 2 - 2Igg'  = 0 (5.6b) 

Eliminating f, g satisfies 

Igg"  + 3gg" - 2g '2 - Ig '  g" + 4g 4 + 4Ig3g ' = 0 (5.7) 

Using the transformation 

we find that (5.7) becomes 

1 
g = ~ g (5.8) 

Igg'" + 3gg" - 2g '2 - Ig 'g"  + g4 + ig3g, = 0 (5.9) 

This equation can be reduced from dispersive long-wave equations in 
two spatial dimensions. 

Case (ii). The subalgebra Y -  Z(1). 
In this case, the solutions of (1.2) have the form 

u = f ( I ) ,  v = xg(1),  I = x t  (5.10) 

f and g satisfy 

f '  + 2g 2 + 21gg' = 0 (5.11a) 

Ig" + 2g'  - 2fg = 0 (5.11b) 

It's easily seen tha t f can  be determined by g, and g also satisfies (5.7). 

Case (iii). The subalgebra of a Z  - z(l). 
The solution in this case is a so-called one-soliton solution, which takes 

the form 

a 
u = ~ [1 - 2 sechZ(t + ax + b)] (5.12a) 

v = - sech( t  + ax + b) (5.12b) 

where a, b are two arbitrary constants. 

6. S U M M A R Y  AND DISCUSSIONS 

We have shown the complete group classification of the coupled PDEs 
(1.1) admitting an extension by one of  the principal Lie algebra. Moreover, we 
have constructed the symmetry algebra for coupled integrable dispersionless 
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equations (1.2) and obtained the similarity reductions, which yield an interest- 
ing ordinary differential equation, which also can be reduced from a dispersive 
long-wave equation in two spatial dimensions. 

It is also worth mentioning that since there are an infinity of conserved 
quantities for (1.2), a natural and interesting problem is how to get more 
symmetries for (1.2). Second, since (1.2) is a integrable model, do there exist 
other classes of  partial differential equations in Table II which are integrable? 
We leave these problems for future study. 
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